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Abstract

The influence of the liquid properties on the dynamical bubble shape and on the bubble motion has been investigated
for bubbles moving under a downward facing inclined surface. The Morton number Mo varied from 2.59 · 10�11 to
2.52 · 10+01. The Bond number Bo covered the range from 10 to 150 and the surface inclination angle h was varied from
2� to 6�. To cover the wide range of Mo, several liquids such as glycerine, propanediol, water and isopropanol were used.
The results have shown that the relation Fr = Fr(Bo,Mo,h) is not adequate to describe the bubble motion, where Fr is the
terminal Froude number. The choice of the terminal Reynolds number Re as the dependent parameter, allowed the
clarification of the role of the Morton number on the bubble motion. At a given Bond number, the bubble Reynolds num-
ber decreases monotonously with the Morton number. Furthermore, an empirical correlation Re = Re(Bo,Mo,h) is given
that can be readily used in the mathematical modelling of bubble laden flows under solids.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Bubbles are encountered in many industrial processes. Several works have been devoted to the prediction of
their motion in extended as well as in bounded media. Vertical and inclined tubes are examples of finite
domains. In certain situations, like in production of aluminium or in nuclear engineering, bubbles move under
an inclined surface. The knowledge of their motion is essential to increase the understanding of these complex
industrial processes. The number of articles published on the rise of bubbles under inclined surfaces is very
small compared to the number of articles devoted to the movement of bubbles through tubes. Masliyah
et al. (1994) studied the rise velocity of very small bubbles of air along an inclined surface in water–glycerine
solutions. The bubble volume V varied from 0.0026 cm3 to 0.013 cm3 and the inclination from 35� to 90� from
the horizontal. It was found that the terminal velocity increases monotonously as the inclination angle is
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increased towards the vertical. They did not find a critical inclination angle at which the velocity is maximal.
Perron et al. (2006a) studied the motion of single bubbles in the wetting regime under a slightly inclined
surface. The air–water–Plexiglas system was only driven by the gravity force. The bubble volume varied from
0.3 cm3 to 9 cm3 and the inclination angle was varied between 2� and 10� from the horizontal. The results
showed that the rise velocity does not increase monotonously with the bubble volume at a given surface
inclination. It was found that, at a given inclination, there may exist four different sub-regimes each charac-
terized by a specific bubble shape. The terminal velocity increased as the inclination angle was increased and
its influence was more considerable at both small bubble volumes and low inclination angles. Maxworthy
(1991) studied the motion of large bubbles moving under an inclined plate through an air–water gravity driven
system. The bubble volumes varied from 5 cm3 to 60 cm3 at intervals of 5 cm3 and the surface inclination was
varied from 5� to 90� from the horizontal. The slope was increased by steps of 5� except for the values of 55�,
65� and 75�. It was found that the terminal velocity of a bubble increases monotonously with the bubble vol-
ume and the rise velocity (terminal velocity) reaches a maximal value at an inclination of about 50�. In all
experiments, the bubble motion was controlled principally by the inertia. Except the work of Masliyah
et al. (1994), which treats of very small bubble volumes, data referring to bubble rising under an inclined wall
are only available for air–water system. The purpose of this work is to study the motion of bubbles rising
under a slightly inclined surface through stationary liquids. Before presenting our results, we discuss the effects
of the liquid properties on the rise of bubbles in infinite and finite media.

The influence of the fluid properties on the motion of a bubble is complex and not evident to describe. For
example, to isolate the effect of the viscosity on the bubble motion experimentally, we should find two non-
toxic liquids with nearly the same density and surface tension but with different viscosities. To overcome this
difficulty many authors used the Morton number defined as
Mo ¼ gm4
Lq3

L

r3
ð1Þ
to describe the working liquid. Here, qL, mL and r are the density, the kinematic viscosity and the surface
tension of the working liquid, respectively. The physical properties of the gas phase are neglected. Then,
the Morton number is solely dependent of the physical properties of the liquid. Hartunian and Sears (1957)
studied the instability of gas bubbles rising in various liquids. Their results suggest that there are two separate
criteria to describe the onset of instability depending of the nature of the working fluid. The bubbles rising at a
Reynolds number less than 202 through a high viscosity fluid or impure liquid are invariably stable whereas
bubbles rising at Re > 202 in a pure liquid, relatively inviscid, are stable until they reach a critical Weber num-
ber of 1.26. The terminal Reynolds number and the Weber number are expressed as
Re ¼ uTd
mL

; ð2Þ

We ¼ qLu2
Td

r
; ð3Þ
where uT is the bubble terminal velocity and d is the equivalent diameter of the bubble defined as
d ¼ 6V
p

� �1=3

; ð4Þ
where V is the bubble volume. The terminal Reynolds number represents the ratio of hydrodynamical forces
or inertia to the viscous forces while the Weber number is the ratio of the inertia to the surface tension forces.
Zukoski (1966) studied the influence of viscosity, surface tension, and inclination angle on the motion of long
bubbles in closed tubes. The tube diameters have been determined in order that the surface tension force play a
significant role on the movement of the long bubbles. It has been found that in the case of a vertical tube, the
effect of viscosity is negligible if the Re based on the tube diameter is greater than 200. In this situation, the
results showed that the Froude number reached a limiting value as the Bond number increased. In the case of
rising bubble through an inclined tube, the Froude number continues to increase with the Bond number. For a
moving bubble bounded within a tube, the Bond and the Froude numbers are defined by
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Bo ¼ qLga2

r
; ð5Þ

Fr� ¼ uTffiffiffiffiffi
ga
p ; ð6Þ
respectively, where a is the tube diameter. Maneri and Zuber (1974) investigated the motion of plane bubbles as
function of tank width, tank spacing, bubble volume, inclination and fluid properties. For vertical plane bub-
bles the latter did not affect the terminal velocity while in the case of plane bubbles rising at inclination, the
terminal velocity was higher in methanol than in water for a given bubble volume. Bhaga and Weber (1981)
studied the motion of single bubbles rising through unbounded viscous liquids. The working liquid was sucrose
and the Mo varied from 7.4 · 10�04 to 850. They measured the bubble terminal velocity, characterized the bub-
ble shape and visualised the bubble wake by using the hydrogen bubble tracer technique. They observed that for
Mo >4 · 10�03, the drag coefficient and bubble shape were uniquely dependent of the Reynolds number. Weber
and Alarie (1986) measured the terminal velocity of extended bubbles in inclined tubes through different liquids.
The Morton number was varied from 2.2 · 10�11 to 1.5 · 10+04. The authors presented their data in term of the
Froude number as function of the Bond and Morton numbers and of the inclination angle. For the influence of
the fluid properties on the motion of bubbles, they observed the same tendency as Zukoski (1966). Maxworthy
et al. (1996) studied the vertical rise of an unbounded bubble in water–glycerine solutions. The value of the
Morton number varied from 7.7 · 10�12 to 78. They found several new scaling regimes and discussed the
dynamical processes that might govern each of them. Their results showed also the well-known tendencies that
for highly viscous liquids, the surface tension regime does not exist and when the movement of a bubble is
controlled by the inertia (spherical-cap regime), the terminal velocity is not influenced by the liquid properties.

Tsao and Koch (1997) studied experimentally the motion of tiny single bubbles rising under an inclined
solid plate. The bubble volume was varied from 5.23 · 10�4 to 1.43 · 10�3 cm3 while the inclination angle
ranging from 10� to 85� to the horizontal. It was observed that when the inclination angle was less than
55� corresponding to We = 0.4, the bubble glides steadily under the plate. The authors mentioned that to
maintain the wetting or in other words lubrication film, a hydrodynamic lift force must exist to balance the
perpendicular component (to the plate) of the buoyancy force. By using the results of Antal et al. (1991), they
concluded that the contribution of the inertial lift is too small. Thus the lift was attributed to the viscous stress
generated in the wetting film. At higher inclination angles, they observed a periodic bouncing motion of the
bubble against the inclined wall without any loss of amplitude. The authors explained this phenomenon by a
transformation of the gravitational potential (as the bubble rises along the plate) into kinetic and surface
deformation energy. DeBisschop et al. (2002) studied numerically the motion of a two-dimensional bubble
in an inclined channel by using the boundary integral method and the Stokes equations for the fluids. They
found that the terminal velocity increases monotonically with the inclination angle. The results have shown
that for inclination angles ranging from 30� to 40� the bouncing motion appeared with possibly decreasing
of amplitude. For slopes greater than 40� until the vertical, the bubbles bounced once. Furthermore, the thick-
ness of the wetting film increased with the Bond number as well as with the inclination angle. Norman and
Miksis (2005a) investigated numerically the dynamics of a small two-dimensional gas bubble initially located
at the center of an inclined channel. The values of the Bond and Reynolds numbers were less than 10 and 100,
respectively. The inclination angle of the channel was varied from 30� to 90� to the horizontal. At low slopes,
they obtained steady state solutions for the bubble rise. Above a critical inclination, their results showed the
periodic bouncing motion observed experimentally by Tsao and Koch (1997). In a second paper, Norman and
Miksis (2005b) realized a computational work concerning the rise of small bubble initially attached to the
upper wall of an inclined channel. The limits of the Bond and the Reynolds numbers as well as the inclination
angle were nearly the same than in their previous study (Norman and Miksis, 2005a). At small values of these
numbers, steadily rising bubbles have been computed. For a given Bo, the effect of increasing Re was to create
periodic oscillations of the bubble shape. At large Re or Bo, detachment of the bubble from the wall as well as
bubble break-up has been computed.

In the series of experiments presented here, the influence of the physical properties of working liquid on
certain characteristic parameters such as the average geometrical aspect ratio as well as the bubble terminal
velocity is investigated.
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2. Experiment

A schematic diagram of the experimental setup is shown in Fig. 1. The length, width and depth of the Plexi-
glass tank were 1.20, 0.34 and 0.34 m, respectively. The solid surface was represented by a Plexiglas plate 1 cm
thick, 16 cm wide and 90 cm long fixed on the tank sides by two pivots. The experimental setup allows surface
inclination angle up to 10�. In this work, the series of experiments have been carried out at inclination angles
of 2�, 4�, 6� and 8�. The bubbles were generally created directly under the surface, behind a movable barrier
for large bubbles, while in certain cases the bubbles were generated in an inverted cup. The bubbles were then
released either by moving the mechanical barrier very slowly to avoid the acceleration of the fluid around the
bubble or by simply rotating the cup in the other case. With both techniques, the bubble volumes were gen-
erally varied from 0.1 to 10 cm3. To obtain the trajectory of the bubble, its instantaneous velocity, shape and
terminal velocity uT, a track-mounted high-speed digital camera was used to follow the moving bubble. The
recording rate depended on the bubble volume as well as on the nature of the working liquid. A transparent
grid (5 mm/division) was placed over the plate in order to identify the position of the bubble as a function of
time. Each experiment was repeated three times. The maximal difference concerning the terminal velocity was
6% while it was 8% for the time-averaged aspect ratio. For more details about the experimental setup and the
methodology (Perron et al., 2006a).

In the present work, the effects of three different pure liquids (excluding distilled water) and their aqueous
solutions on the bubble motion are investigated. The liquids are isopropanol, propanediol and glycerine. To
change the Morton number of the pure liquids we have used two different ways. The isopropanol and the pro-
panediol have been diluted with water while the glycerine has been heated. Densities of the mixtures generated
from the two first liquids were measured with a pycnometer, surface tension with a du Nouy ring setup and
viscosities with capillary viscometers. These parameters were measured three times for each concentration and
the averaged results are presented in Tables 1 and 2. For the glycerine, available data were taken from the
literature while the unknown were measured and presented in Table 3. In this work, some earlier results
Fig. 1. Schematic of experimental apparatus.



Table 1
Physical properties of the propanediol–water solutions and the values of the Morton number

Propanediol (% by wt) Temperature (�C) Surface tension (N/m) Density (kg/m3) Viscosity (m2/s) Mo

1 99.5 20 0.0406 1034.7 4.98 · 10�05 9.97 · 10�04

2 75 20 0.0450 1040.0 1.67 · 10�05 9.34 · 10�06

3 50 20 0.0493 1035.3 6.67 · 10�06 1.79 · 10�07

4 25 20 0.0520 1015.3 2.52 · 10�06 2.96 · 10�09

Table 2
Physical properties of the isopropanol–water solutions and the values of the Morton number

Isopropanol (% by wt) Temperature (�C) Surface tension (N/m) Density (kg/m3) Viscosity (m2/s) Mo

5 99.5 20 0.0243 781.5 3.07 · 10�06 2.89 · 10�08

6 75 20 0.0266 844.4 3.89 · 10�06 7.17 · 10�08

7 50 20 0.0282 905.0 4.19 · 10�06 1.00 · 10�07

8 25 20 0.0318 957.6 2.86 · 10�06 1.80 · 10�08

Table 3
Physical properties of the glycerine and the values of the Morton number as function of the temperature

Glycerine (% by wt) Temperature (�C) Surface tension (N/m) Density (kg/m3) Viscosity (m2/s) Mo

9 99.5 22 0.0623 1257.3 7.48 · 10�04 2.52 · 10+01

10 99.5 31 0.0619 1252.1 3.67 · 10�04 1.47 · 10+00

11 99.5 41 0.0615 1246.2 1.77 · 10�04 8.01 · 10�02

12 99.5 50 0.0611 1240.3 9.67 · 10�05 7.18 · 10�03
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obtained by the authors (Perron et al., 2006a) are also presented. These results concern the bubble motion
through water where the Morton number is 2.59 · 10�11.

Here, the emphasis was put on the determination of certain characteristic parameters of the bubble motion
such as the terminal velocity uT as well as the averaged aspect ratio r. Although the instantaneous velocity was
computed at each time step, it was only used to determine the onset of the steady state regime. We consider
that the steady state regime is reached when the instantaneous velocity oscillates around a mean value. The
acceleration period in low-Morton-number liquids was generally below 1 s, while it exceeded slightly 1 s in
high-Morton-number liquids. The transition period being short, – less than 1–10% of the total duration of
observation – sufficient time was left to sample several points in the steady regime.

The paths (observed in the plane of the solid surface) of all the bubbles presented in this work were recti-
linear. Furthermore, the authors did not observe the bouncing motion mentioned by Tsao and Koch (1997)
and computed by DeBisschop et al. (2002) as well as by Norman and Miksis (2005a). It is likely that in the
present work, the bubble volume was too large and the inclination of the solid wall was too small to provoke
the bouncing motion. In water, propanediol, glycerine and their ‘‘solutions’’, the authors did not observe the
break-up of the bubbles. However, in pure isopropanol as well as in its solutions (numbers 5 and 6, Table 2)
bubble rupture occurred frequently at high volume when the bubble was released by the inverted cup method.
Sometimes a large bubble (V > 7 cm3) ruptured during its ascension under the inclined wall. This phenomenon
may be explained by the fact that the surface tension of the isopropanol is the lowest among the modelling
liquids used in our experiments.

3. Results and discussion

3.1. Effect of the fluid properties on the bubble shape

In this work, the bubble shape is basically characterized in the plane of the solid surface. The different
geometrical parameters used are shown in Fig. 2. The instantaneous aspect ratio is defined by



Fig. 2. Illustration of the different geometrical parameters used to describe the bubble shape: (a) deformable bubble, (b) semi-rigid bubble.
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rðtÞ ¼ bðtÞ
aðtÞ : ð7Þ
In the analysis of the results the average values of r(t) will be used. Although the mean aspect ratio does not
describe the shape of the bubble in detail, it gives an idea about some basic tendencies of the shape evolution,
like the transition from a longitudinally elongated form (r < 1) into a transversely elongated one (r > 1).
Generally, for semi-rigid bubbles (Fig. 2b), it was found that the frontal part of the moving bubble has a
nearly perfect circular shape. Then, two parameters of the circular segment such as the radius of curvature
R and the central angle u were used to characterize the geometry of the bubble nose. The shape in the vertical
section through the axis of motion (longitudinal plane or vertical plane) is described in the following lines. In
most of the cases, the contour of the bubbles in the vertical section is convex. However, in certain circum-
stances, the curvature of the contour varies, convex and concave segments coexist. Under such conditions,
the thickness of the front of the bubble is bigger than that of the rear part. Fortin et al. (1984) observed this
phenomenon for very large bubbles moving under a slightly inclined surface. The interface deformation is
nearly steady and the bubble front (the so-called ‘‘nose’’) may reach a thickness of 2 cm as shown in
Fig. 5b. In our interpretation, the formation of a deeper, thicker gas-head at the nose of big gas pockets in
motion is analogous to the formation of hydraulic jumps in free surface flows.

Fig. 3 shows the strong effects of the liquid properties on the bubble shape for different volumes at an
inclination of 4�. The different shapes presented in this figure are observed in the pure liquids. The bubble
movement is directed to the right. The four nominal bubble volumes presented in Fig. 3 correspond to one
sub-regime introduced in an earlier work (Perron et al., 2006a). Those sub-regimes have been observed in
water. The smallest volume corresponds to the semi-rigid bubble while the second one is termed the oval oscil-

lating bubble. The bubble volumes of 4.0 cm3 and 7.0 cm3 correspond to the deformable bubble and the bulged

bubble sub-regimes, respectively. Besides the dominant tendencies shaping the bubbles into approximately
round, oval or elongated forms, there are secondary effects that result in ripples, protuberances as well as
undulations. The complexity of bubble shape is a result of many interacting factors like surface tension,
gas pressure, hydrodynamic forces, etc. In the case of large bubbles, there is a nonlinear interaction between
bubble shape and hydrodynamic forces. Certain velocity and vorticity distributions provoke a deformation of
the bubble interface which in turn will change the flow pattern around the bubble. These nonlinear interac-
tions are responsible for the oscillations in the shape.

For the bubbles of 0.5 cm3, the strong influence of the liquid on the dynamical bubble shape is shown in the
first column of Fig. 3 as well as in Fig. 4a which presents the instantaneous aspect ratio of the moving bubbles
as function of their position under the plate in order to homogenise the time scale. In water, the bubble has a
nearly circular shape with a slightly higher radius of curvature at its front. The mean aspect ratio r is 1.36 and
the amplitude of fluctuations is weak. The bubble of 0.5 cm3 in isopropanol presents a more elongated shape
in the direction perpendicular to the bubble movement with a mean value of r equals to 4.11. Furthermore, the



Fig. 3. Dynamical bubble shapes for different bubble volumes in various pure liquids at a surface inclination of 4�. The bubble movement
is directed to the right and the shapes are characterized by their contour in the plane of the solid surface.
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amplitude of fluctuations is higher than in the case of the previous bubble in water. The oscillations show peri-
odic behaviour. The fluctuations of r(t) for the moving bubbles of 0.5 cm3 through propanediol and through
glycerine are strongly attenuated and the bubble shape is circular. For the former, the average values of the
aspect ratio are 1.05 while for the later, r = 0.97. The bubble interface in the vertical plane behaved as if it were
rigid for all bubbles having a volume of 0.5 cm3. The aspect ratio of the bubble of 1.5 cm3 in water oscillates
periodically around a mean value of the aspect ratio of 3.09. There is no hydraulic jump visible in the vertical
section. The corresponding bubble in isopropanol is more deformable and the shape oscillations are still
periodic with an average value r = 4.93. In the vertical plane, there is a non-steady deformation – a hydraulic
jump – as shown in Fig. 5a. In high-Morton-number liquids, the bubble shape is strongly different. The bubble
in propanediol shows an ellipsoidal cap shape while the one in glycerine still presents a circular shape. As we
will see in the next section, an arbitrary distinction will be done between the high- and low-Morton-number
liquids based on the behaviour of the terminal Froude number as function of the Bond number. The average
values of r are 1.34 for the former and 0.95 for the latter (Fig. 4b). The axis of the bubble in the direction of the
movement through glycerine is slightly longer than the axis perpendicular to it. This elongation is due to the



Fig. 4. Instantaneous aspect ratio for moving bubbles through different liquids at an inclination of 4�: (a) 0.5 cm3, (b) 1.5 cm3, (c) 4 cm3

and (d) 7 cm3. The symbols used for the different pure liquids are presented in (a).

Fig. 5. Side view of a deformable bubble moving towards the right: (a) a picture of a non-steady interface deformation, called hydraulic
jump, is observable for intermediate bubble size in low-Morton-number liquids; (b) a schematic representation of a nearly steady hydraulic
jump for very large bubbles as observed by Fortin et al. (1984).
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formation of a small ‘tail’ at the rear part of the bubble. The ‘tail’ is more visible at higher bubble volumes. In
the longitudinal plane, the interface contour is rigid. The bubble of 4.0 cm3 in water is characterized by strong
amplitude of fluctuations around a mean value of 5.06. In the vertical plane, there is a non-steady hydraulic
jump. The corresponding bubble in isopropanol forms a kind of boomerang shape always with a deformation
of the interface contour in the vertical longitudinal section. The mean value of the aspect ratio is 4.20 and the
bubble shape is more stable than the previous one of 1.5 cm3. In viscous liquids, there is no major change in
the characteristic bubble shape anymore. However, in propanediol, a weak tendency to decrease the curvature
at the rear part of the bubble with increasing volume may be observed. In other words, the rear part tends to
be straightened at intermediate and large volumes. The aspect ratio of the bubbles through the propanodiol
and the glycerine is 1.77 and 0.90, respectively. The bubble of 7 cm3 in water forms a bulged bubble with a
mean aspect ratio of 4.45. The amplitude of the shape oscillations is weaker than for the previous bubble
of 4 cm3. This tendency (attenuation of the shape oscillations as the Bond number increases) observed in
low-Morton-number liquids may be similar to the results of Norman and Miksis (2005a) who mentioned
that when the bubble reached a near spherical-cap shape, the amplitude of oscillation damps out. The



Fig. 6. Time-averaged aspect ratio as function of the bubble volume for the four different pure liquids at a surface inclination of 4�.
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characteristic shape of the bubble in isopropanol is the same as that for 4 cm3. The aspect ratios for the bub-
bles of 7 cm3 moving through the isopropanol, propanediol and glycerine are 4.14, 1.91 and 0.98, respectively.

Fig. 6 shows the time-averaged aspect ratio for the four pure liquids as function of the bubble volume for an
inclination angle of 4�. An evident observation is that all the four curves reach a plateau of nearly constant r at
different values of the bubble volume. In two cases the curves are monotonous while for water and isopropa-
nol the plateau is preceded by a maximum. The volume value at which the plateau is reached for each liquid is
not a monotonous function of the Morton number. However, the nearly constant value of r obtained in each
curve seems to be described by a monotonous relation of the Mo. In glycerine, r is independent of V and its
value is almost 1. Fig. 7 shows the radius of curvature R at the bubble nose and the angle u (see Fig. 2b) as
function of the volume for bubbles moving through the high-Morton-number liquids at a slope of 4�. These
two parameters characterize the circular segment of the interface contour in the plane. In Fig. 7a, R increases
monotonously with the bubble volume while the angle u decreases rapidly from 180� to an asymptotic value of
140�. The latter asymptotic value is denoted by u* in the following paragraphs. For bubbles moving through
propanediol, at low bubble volume there is a weak increase of the aspect ratio until a value of 5 cm3 (Fig. 6).
At this value, r reaches a nearly constant value of 1.90. The circular shape of the interface contour for inter-
mediate bubbles (V > 3 cm3) is restricted to an angle of 60� from the bubble nose (Fig. 7b). The decrease of the
central angle u with the bubble volume is more drastic than that observed in glycerine. The radius of curvature
increases almost linearly with the bubble volume for both viscous liquids. The rate of increase of R is higher in
propanediol than in glycerine. For instance, for the same bubble volume of 9 cm3, R reaches a value of 4.31 cm
for the former and 2.54 cm for the latter. In low-Morton-number liquids, the trend of the curves is markedly
Fig. 7. Radius of curvature at the bubble nose R and the angle u as function of the bubble volume for two different liquids at a surface
inclination of 4�: (a) glycerine and (b) propanediol.



Fig. 8. (a) Variation of u* as function of the solid surface inclination angle and (b) influence of the Morton number on the value of u* for
an inclination of 4�.
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different. For bubbles in water, there is initially a growth of the aspect ratio as the bubble volume is increased.
At V = 6 cm3, the maximal value of 5.58 is reached. A further increase of the bubble volume provokes first a
sharp decrease followed by a slight increase up to an almost constant value of 4.80. As it shown by Perron
et al. (2006a), the decrease corresponds to the beginning of the bulged bubble sub-regime dominated principally
by inertia. In isopropanol, the tendency of the curve is the same than in water. The major difference is the
sharp increase of r at low bubble volumes. The marked increase of r at low bubble volumes may reflect the
fact that the surface tension of the isopropanol is about three times lower than the one of water.

Fig. 8a shows the variation of the asymptotic value of the central angle describing the circular shape of the
bubble nose u* as function of the inclination angle of the solid surface h for two different high-Morton-
number liquids. For both liquids, u* decreases with the inclination angle. For Mo = 2.52 · 10+01, the influence
of h is stronger at low inclination angles while for Mo = 7.18 · 10�03, the rate of the diminution slows down,
tending to a nearly constant value. Fig. 8b presents the effect of the Morton number on the asymptotic value
of the central angle for the high-Morton-number liquids at a surface inclination angle of 4�. The increase with
Mo is not monotonous. There are two sharp increases of u* in the Morton number range from 9.97 · 10�04 to
2.52 · 10+01. Between these regions, there is a zone where u* increases slightly with Mo. The same behaviour
has been observed for different surface inclination angles studied in the present work.

To summarize, the strong influence of the liquid properties on the characteristic bubble shape has been
shown through several parameters such as the aspect ratio as well as the angle u and the radius R of the
circular front section for the high-Morton-number liquids. On the other hand, it is difficult to establish a
global correlation between the average aspect ratio as function of the bubble volume and the Morton number
for a wide range of the latter. This is due to the non-monotonous variation of certain variables as function of
the Mo. For instance, the initial rate of increase of the aspect ratio with the bubble volume varies non-
monotonously with the Mo at low bubble volumes. Nevertheless, some parameters such as the plateau values
of the aspect ratio tend to increase with the Morton number. Furthermore, in the high-Morton-number liq-
uids, the value of the asymptotic value of the central angle u* tends to increase with the Morton number. In
other words, the bubble shape in the plane of the surface tends to be ‘more circular’ with increasing Mo. In
Section 3.2, the influence of the liquid properties on the bubble terminal velocity is studied in detail.

3.2. Effect of the liquid properties on the terminal velocity

In Section 3.1, it has been shown that the working liquid has a strong effect on the characteristic bubble
shape. Then it is also expected that the liquid plays an important role on the bubble terminal velocity. The
liquids used were pure propanediol and isopropanol as well as their aqueous solutions. There was also glyc-
erine used at different temperatures. Fig. 9 shows the bubble terminal velocity as function of the equivalent
diameter d for an inclination of 4�. In Fig. 9d, the data for water (Mo = 2.59 · 10�11) are presented again



Fig. 9. Raw data of the terminal velocity as function of the equivalent diameter for different liquids at an inclination angle of 4�: (a)
glycerine at different temperatures; (b) propanediol–water solutions; (c) isopropanol–water solutions and (d) water.

A.L. Perron et al. / International Journal of Multiphase Flow 32 (2006) 1311–1325 1321
(Perron et al., 2006a) in order to compare the general tendency of the curves. In the water, the increase of the
terminal velocity with the bubble volume is not monotonous. The authors identified four bubble sub-regimes
each characterized by a specific bubble shape. At small equivalent diameters d, there is the semi-rigid bubble

sub-regime followed by the oval-oscillating bubble sub-regime. At intermediate bubble volumes, it is the
deformable bubble sub-regime and the terminal velocity is almost independent of the bubble volume. When
the bubble volume becomes large enough to form a shape like a boomerang, uT becomes function again of
d and increases with it. The bubble with this specific shape is called bulged bubble. For the glycerine solutions
(Fig. 9a), the behaviour of the curves is simple compared to the other liquids; uT increases monotonously with
d. At a given bubble volume (given d), the terminal velocity increases when the Morton number is decreased.
In the propanediol solutions (Fig. 9b), the curves with a relatively high value of Mo present the same behav-
iour than glycerine while the curves with a low value of Mo show similarities with the water. Except the tran-
sition zone from the deformable bubble to the bulged bubble sub-regimes, uT decreases with Mo at a given
bubble volume. As it is shown in Table 2, the range of the Morton number describing the four isopropanol
solutions is narrow. However, the curves in Fig. 9c present some interesting phenomena. First, for low bubble
volumes, the bubble dynamics is influenced by a small change in the Mo and the bubble terminal velocity is not
a monotonous function of the Mo. Finally, the curves in the bulged bubble sub-regime converge to a single one
even if there is difference in the values of the Morton number.

Figs. 10 and 11 show the raw data presented in Fig. 9 in a dimensional form. In the graphs, the Froude
(Maxworthy, 1991) and the Bond numbers are defined by
Fr ¼ uTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dg sin h

p ; ð8Þ



Fig. 10. Fr as function of Bo at an inclination angle of 4� for the high-Morton-number liquids.

Fig. 11. Fr as function of Bo at an inclination angle of 4� for the low-Morton-number liquids.
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where h is the solid surface inclination angle and
Bo ¼ qLgd2

r
; ð9Þ
respectively. The results are divided into two groups: the high- and low-Morton-number liquids (Figs. 10 and
11, respectively). The arbitrary distinction is inspired by Harper (1972) who considered the low-Morton-num-
ber liquids as those in which the Cd–Re curve has a minimum. In the present work, the latter liquids are those
in which the Fr–Bo curve has a maximum at an inclination of 6�. For the high-Morton-number liquids
(Fig. 10), the increase of the Froude number with the Bond number is monotonous. At an inclination of 4�
and even at high Bo, the Fr still does not reach a nearly constant value. Furthermore, at a given Bond number,
the Froude number increases when the Morton number decreases. In high-Morton-number liquids, the rela-
tion Fr = Fr(Bo,Mo,h) including the Morton, Bond and Froude numbers as well as the inclination angle of
the solid surface may describe the motion of a bubble under a slightly inclined surface in the wetting regime.

In low-Morton-number liquids (Fig. 11) the results are more difficult to interpret. First, for all the curves,
the variation of Fr as function of the Bo is not monotonous. Second, beyond a value around 80 of the Bo, all
the curves reach a nearly constant value of the Froude number. When Fr becomes independent of Bo, the
bulged bubble sub-regime is reached. The latter corresponds to the well-known spherical-cap regime in an
extended fluid (Maxworthy et al., 1996). Continuing the analogy, it is well known that in the inertial regime,
the bubble motion through an infinite medium is independent of the liquid properties (Hartunian and Sears,
1957). In other words, all the curves corresponding to different Morton numbers converge to a single one in
the spherical-cap regime. In our case the situation is more complex due to the presence of the wetting film. The
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bubble motion is controlled on one hand by the flow around the lower bubble interface and on the other hand,
by the viscous dissipation associated with the existence of the wetting film between the bubble and the solid
plate. Indeed, as we can see in Fig. 11, the curves do not converge to a unique one. Furthermore the asymp-
totic values are not a monotonous function of the Morton number. For the isopropanol solution, the four
curves converge to a unique value of the Froude number of around 1.3. This convergence may be due to
the fact that the nature of the liquid is the same. Fig. 11 shows clearly that the combination of non-dimen-
sional parameters Fr = Fr(Bo,Mo,h) is not sufficient to describe the motion of a bubble moving under a
slightly inclined solid surface for a wide range of the Morton number. First, the role of the Morton number
on the bubble motion is difficult to interpret and second, a combination of the same non-dimensional param-
eters (Bo,Mo,h) give two different values of the Froude number in the bulged bubble sub-regime. For instance,
the asymptotic values for the propanediol solution Mo = 1.79 · 10�07 and the isopropanol solution
Mo = 1.00 · 10�07 are 1.15 and 1.30, respectively. Recalling that the Froude number represents the ratio of
inertial to gravity forces, it is likely that, from a dynamical point of view, the choice of Maxworthy (1991)
(Fr being the dependent parameter) is not the best to described the bubble motion under an inclined plane
when the Morton number varies largely. The results obtained in the present work suggest the use of the ter-
minal Reynolds number as the dependent non-dimensional parameter to describe the motion of a bubble
under an inclined solid plate. Fig. 12 shows the variation of the Reynolds number as function of the Bond
number at an inclination angle of 4� for the whole set of liquids used in this work. With this combination
of the non-dimensional parameters Re = Re(Bo,Mo,h), the bubble motion may be clearly characterized
and the role of the Morton number on the bubble dynamics can be illuminated. The variation of Re with
Mo at a given Bond number is monotonous as shown in Fig. 13 and it decreases as the Mo increases. The
same tendency has been observed at different inclination angles.

In order to facilitate the application of our findings to mathematical modelling of bubble laden flows, the
results have been cast into an empirical correlation of the Reynolds number inspired by Angelino (1966):
Fig. 1
Re ¼ fBog; ð10Þ

where f and g are parameters which both depend upon the properties of the liquids and the inclination angle of
the surface. Fig. 14 presents the values of those parameters for inclination angles of 2�, 4� and 6�. The corre-
lations 10 and 11 are valid for 20 6 Bo 6 150 in the whole range of the Morton number from 2.59 · 10�11 to
2.52 · 10+01. The maximal deviation is around 5%. Recalling that the terminal velocity of a bubble moving
under a solid plate is reached when the component parallel to the surface of the buoyancy force equals the
drag force, the drag coefficient Cd can also be computed by
Cd ¼
4

3

Bo3=2�2g

f 2Mo1=2

� �
sin h ð11Þ
if all the terms in the relation Re = Re(Bo,Mo,h) are known.
2. Reynolds number as function of the Bond number at an inclination angle of 4� for the whole set of liquids used in this work.



Fig. 14. Values of the parameters c and d used in expression (10) for three different inclination angles 2�, 4� and 6�.

Fig. 13. Variation of the Re as function of the Mo for three different values of the Bond number at an inclination of 4�.
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To resume, in this subsection, the role of the Morton number on the bubble dynamics has been clarified
with the appropriate choice of the dependent parameter. At a given Bond number, the Reynolds number
decreases monotonously with the Morton number. Furthermore, an empirical correlation for the terminal
Re has been given to facilitate the mathematical modelling of bubbly flow for different inclination angles.
The choice of the terminal Reynolds number as the dependent parameter, may reflect the role of the wetting
film in controlling the bubble motion. To improve the understanding of the momentum transfer between the
bubble and the plate, the thickness of the wetting film must be known. To shed light on this issue, a multifiber
optic sensor to measure the liquid film thickness has recently been developed by the authors (Perron et al.,
2006b).

4. Conclusions

In this work, the influence of the liquid properties on the dynamical bubble shape as well as on the bubble
terminal velocity has been studied in detail. All data reported here concern bubbles moving in the wetting
regime, i.e. when there is a thin liquid film between the bubble interface and the solid surface. Air bubbles
and different liquid (isopropanol, propanediol and glycerine) solutions were used in the two-phase gravity dri-
ven system. The solid surface was represented by a plate of Plexiglass. The Bond number covered the range
from 10 to 150 and the surface inclination angles were varied from 2� to 6�. In the studied ranges, the results
have shown that
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• The effect of the liquid properties on the dynamical bubble shape is complex. The bubbles moving through
low-Morton-number liquids are much deformable than those moving through high-Morton-number
liquids. Indeed, the maximal values of the aspect ratio reach about 5 for the former and 2 for the latter.
The variation of the aspect ratio with the bubble volume at a given inclination depends upon the liquid
properties.

• In high-Morton-number liquids at a given surface inclination, the radius of curvature at the bubble front R

increases monotonously with the bubble volume while the central angle u, which characterizes the circular
frontal section of the bubble interface contour in the plane of the solid, decreases sharply at low bubble
volumes and reaches a nearly constant value at high volumes.

• The relation Fr = Fr(Bo,Mo,h) does not describe unambiguously the motion of a bubble under a slightly
inclined solid surface in a wide range of the Morton numbers. The choice of the terminal Reynolds number
as dependent parameter allowed the clarification of the role of the Morton number on the bubble motion.
At a given Bond number, the terminal Reynolds number of the bubble decreases monotonously with the
Morton number.

• An empirical correlation Re = Re(Bo,Mo,h) to support mathematical modelling of bubbly flows in the
studied range of parameters has been given.
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Maxworthy, T., Gnann, C., Kürten, M., Durst, F., 1996. Experiments on the rise of air bubbles in clean viscous liquids. J. Fluid Mech.

321, 421–441.
Norman, C.E., Miksis, M.J., 2005a. Dynamics of a gas bubble rising in an inclined channel at finite Reynolds number. Phys. Fluids 17, 13.
Norman, C.E., Miksis, M.J., 2005b. Gas bubble with a moving contact line rising in an inclined channel at finite Reynolds number.

Physica D 209, 191–204.
Perron, A., Kiss, L.I., Poncsák, S., 2006a. An experimental investigation of the motion of single bubbles under a slightly inclined surface.

Int. J. Multiphase Flow 32, 606–622.
Perron, A., Kiss, L.I., Verreault, R., 2006b. A multifiber optic sensor to measure the liquid film thickness between a moving bubble and an

inclined solid surface. Meas. Sci. Technol. 17, 1594–1600.
Tsao, H.K., Koch, D.L., 1997. Observations of high Reynolds number bubbles interacting with a rigid wall. Phys. Fluids 9, 44–56.
Weber, M.E., Alarie, A., 1986. Velocities of extended bubbles in inclined tubes. Chem. Eng. Sci. 41, 2235–2240.
Zukoski, E.E., 1966. Influence of viscosity, surface tension and inclination angle on motion of long bubbles in closed tubes. J. Fluid Mech.

25, 821–837.


	Motion of singles bubbles moving under a slightly inclined surface through stationary liquids
	Introduction
	Experiment
	Results and discussion
	Effect of the fluid properties on the bubble shape
	Effect of the liquid properties on the terminal velocity

	Conclusions
	Acknowledgements
	References


